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Two related techniques have been proposed in the past for improving

the performance of the sign detector , through higher—order data quantization .

The fixed—threshold rn—interval detector and the generalized sign detector

using a conditional teut are both nonparametric detectors which are fairly p
simple to implement. In this paper we compare the asymptotic and finite—

sample , finite—signal performance characteristics of these two detectors,

and point out their relative advantages and disadvantages. ..~~ -
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I. INTRODUCTION

For the detection of a deterministic signal in additive noise with
zero median, the ~4gn detector is an easily implemented nonparametric
detector with a constant probability of type I error (false alarm). Let

x— (x1, x2, ... ,
~~~ ) be the vector of possibly signal—bearing observations,

80 that

— V1 + ~
9i , 1—1,2, ... , n, (1)

where 0 ~ 0 and the Vj are independent random variables representing noise.
We will denote by F and f the con~ on probability distribution and density

functions , respec tively , of the Wj. The signal components s~ are ass umed
to be non—zero. -

In the constant signal case the sign detector test statistic for

tes ting O~ 0 vs. 0 >0 is

T 
n&l sgn(~~) (2)

where
1 , x > O

sgn(x) • { — ~ , x< 0

For a time—varying signal , the above statistic can be modified to
n

T E sgn(sj)sgn(Xi) (3)
i—i

or to
~ n
T — E sj sgn (Xj ) (4)

i—i

AThe statistic T is simpler to implemen t than T, but has a somewhat lower

efficiency, as will be seen later. 
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The performance of the sign detector is rather poor for noise densities

such as the Gaussian , when compared to the corr espond ing op timal (parame tr ic)

detectors and to more complex nonparametric detectors based on data ranking.

In order to obtain improved performance over that of the sign detector , without

a major increase in complexity, two schemes have been proposed based on a

higher—order partitioning of the observations. The rn—interval detector has

been described in (1), and the ~~~~~~~~~~~~~~~~~ ~~~~~~~ was first formulated

in [21. In this paper we will compare the relative performances and charac-

teristics of these two detectors. We will consider the asvtnptotlc performance

of the detectors (for O-~O and n-’~”), as well as finite—sample charncteristtcs.

Both of these extensions of the simple sign detector have also been applied

in schemes for the detection of random signals, in multi—input systems , for

sequen tial de tection , and in other applications ([3) — [6)). However , the

compar isions we will present for the deterministic signal case with a single

fixed—length observation vector will bring out the main features of these two

schemes.

In the next section we describe briefly the rn—inte rva l  and ~~ n’raUzed

- - sign detectors, before considering their performance characteristics In

Section III.

II. EXTENSIONS OF THE ICN DETEC

Let us first assume that the signal in (1) is constant , so tha t s~ — a 0,

i—l ,2,...,n. Consider a vector a — (a0, a1, ... , 

~ m~~’ 
where a0 

— -“,

am ~~‘ and a
3 

a3, 1, j’.l,2,...,m. We def ine intervals

I~ — (a
3~~ ~ 

8
3
1~ 3— 1 ,2, .~~ ,m (3)

and denote by N
3 

the number of observa tions t a f l I n~ in t~ . Now suppose

that the a
3 
are quantilea of the noise distribution F, so tha t F (a

,~ 
3/rn. in

this case the teat statistic defined by

_ _ _ _ _
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where b — (b15b2,... ibm) is a deterministic weight vector , can be used to form
a nonpararnetric test for 0 0  vs. 0>0 in (1). This is because for any

noise distribution function F with quanti].es given by a, the distribution

of Q when 0—0 is exactly known. A detector formed according to this scheme

is known as an rn—interval detector [1J. Note that the sign detector

is obtained when m—2, a1—0 and b1——1 , b2 1. It is also clear that a may

be any vector of partitioning parameters aj for which the F(aj) — P3 are
known. It may be more reasonable to assume that the a vector corresponding

to the values pj—j/m can be estimated from prior data. The weight vector

b would normally be picked to result in a good compromise in performance

over some collection of possible density functions f.

Let us now assume that the noise density function is symmetric, so

that f(x) — f(—x). Let the vector a have odd—symmetry , that is, am... p~ ~~~~

£ 1 ,2,...,m—1 . If f is symmetric , an odd—symmetric a would be required for

the rn—interval detector if p3 — 3/rn. In addition, as will be seen in the

next section, the optimum choice of a for given symmetric f is odd—symmetric .

The generalized sign detector [2) based on any odd—symmetric a vector

achieves a fixed type I error probability for any symmetric density function

• of the noise. Its test statistic is also defined by (6), but the test is

formed by a comparision with a variable threshold , with a variable random-

ization probability when Q is equal to the threshold. Note that knowledge

only of the symmetry of f is not sufficient to yield the distribution of

Q when 0— 0. Consider, however, the statistic C = (Cj~C2~ ...,C~) with

C i — N 1+ Nm...i+ ~~
, ~ 1,2,...,~~, 

(7) 
W~~~j ctim
Buff Siction 

~where p — (in/2], the largest integer less than m/2. Now conditioned on Q

~~, the distribution of Q when 0 — 0 is completely defined ; the distribution _______

of N i given C~ is binomial, independent of the binomial distribution of

lIj given Cj for 3 # t. Thus a nonparametric test can be implemented with

_ _ _  - - -  
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thr.sholds and randomization probabilities computed as functions of C.

As an example, for a four—level te8t (m—4) the test parameters are

functions of the scaler C1 - N1 + N4. It should be noted that here also

th. case m—2 reduces to the sign test. This detector structure is shown in Fig. 1.

The rn—interval detector is based on the assumption that the vector

of quentiles ! for the noise is known, or at least that the F(aj) values - 

-

are known for the components of a given a, for the c1~~sof allowable noise

densities. Such classes of noise densities are nonparametric classes,

but are somewhat restrictive in their membership. For example, for m=3 or 4

with an odd—symmetric a vector of quantiles, only one Gaussian density

can belong to the allowable c1a~s, For rn-S and some assumed quantile ve’tor

a, no Gaussian density (or any other parametric density with only one
Ii

or two free parameters) may belong to the allowable cla~ s. The generalized

sign detectot needs a conditional structure which represents a slight

increase in implementation cost, but gives nonparametric performance for

the large class of symmetric densities for the noise. The increa~c in

complexity due to the conditional structure is usually nominal; for the

- • case where m—3 or 4, conditioning is only on the scaler C1, and can be

easily implemented using a table look—up scheme (21. An increase in m

from two to four generally represents a practical trade—off between improved

performance and increase in detector complexity for both the conditional

and unc nditional implementations of the rn-interval detector .

Since the rn—interval detector is based on more specific assumptions

about the class of allowable noise densities, its detection performance

can be expected to be better than that of the conditional—test implemen-

tation leading to the generalized sign detector. It will be found, however,

that the difference in performance is small for most cases of interest.

Before we tak. up the performance comparisions, we will briefly indicate

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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how both detectors above may be modified for the case where the

are not all equal.

Note that the test statistic Q of (6) can be wri t t en as [7)

m fl
— 
~~ 

bj E Z j 3 , (8)

where ( 1, Xjc13

~ 0, otherwise

U
so that N3 — Z Z13. Simple modifications of Q which lead to more efficient

i—i
tests for non—constant signals may be defined as the test statistics

— 
~~1

bj~~1
ssn(si)Zjj (10)

and

~ in n
Q — E b3 E s~Zj3 (11)

3—1 i—I

For the rn—interval detector , it is assumed that for 0.0 the matrix Z of random

variables Zjj has a known distribution. For the generalized sign detector ,

based on the symmetry of the noise density functions, we also have a

known distribution for 2 conditioned on C of (7). Thus both Q and Q can be used

for a conditional—test generalized sign detector. It Is anparent that and Q re-

duce to and T, respectively, when m 2  and h2 —b1 — 1.

III. PERFORMANCE CHARACTERISTICS

(a) Asymptotic Performance

The ayrnptotic relative efficiency (ARE) of two detectors is the ratio

of sampl e—sizes required by thc detectors to maintain the same per-

formance (error probabilities) in the limiting case when signal strength

approaches zero, and thus sampl . sizes tend to infinity. In many cases the

- ~~~ - --~~~~~~~~~~ -~~~~~~— - - -- ——~~~~-— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~-
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ARE of two detectors is simply the ratio of their efficacies (8). the efficacy

c of a test based on a statistic S being defined by

[_~
._ E(S}l J 2u r n  d8 8—0

~~~~~~~n )oD n Var (Sfl8—0

Thus c is like a signal-to—noise ratio measure for weak signals.

An interesting conclusion may be drawn from the above. This is that

the ARE of the rn—interval detector relative to the generalized sign detector

is unity, when a, b, are the same for both detectors, based on any one

of the three test statistics of (8), (10), or (11). Although this

follows from the fact that the efficacies are then the same for both

detectors, some care is needed in proving that this implies an ARE of

unity, since the generalized sign detector uses a conditional test.

This type of proof has been outlined in [4].

This result implies that for large sample sizes there will be very

little difference in performance between the two detectors, even though

one is based on a more specific set of assumptions about the symmetric

noise density function. This may be intuitively explained by the fact

that, in principle, for large sample sizes good estimates of the noise

quantiles may be obtained from observed data (signal—bearing or noise—

only), given that the noise density is symmetric.

From the definition of (12), it can be shown directly that ~~~~,

the efficacy of the detectors based on ~~of (10), is given by

m

_ _ _ _ _ _ _ _ _  

(~~~b Ef ( ) f (13)

2 
i—l i i—l

• 
~~~ 

b
3 
(F(a

3
) — F(a

3 1
)] — {

3
E
1
b

3 
[F(a

3
) — F(a

3 1
)fl2
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where s — 
~~~~~~~ 

; 
~~~ 

s~ . For Q, the efficacy C is given by (13) with 2

replaced by T12 - [1 I s~I ] 2 
. Note that ~~~ < It is easily

shown that for given a, the best choice of b maximizing or is

b - K f(aj-l) 
- 1(aj) , j-l,2,...,m , (14)

F(aj) — F(aj—~)

where K>O is any constant. The optimum a vector for some assumed noise density
f can then also be obtained ; this a is odd—symmetric for symmetric f.

The vector of quantiles is not necessarily the best choice for a for given

f. However, the quantiles may be reasonable if the detector is to be im-

plemented as a nonparametric detector for the class of allowable noise

densities whose q u an t i l e s  are assumed known based on prior measurements.

(b) Finite—Sample Performance

One of the interesting questions which we now consider is the degree

of performance degradation in the generalized sign detector as compared to

the rn—interval detector , for f i n i t e  samp le sizes and f i n i t e  signals.  The

numerical performance results will be obtained for the case where m—4.

Although results for higher-order partitioning can he obtained in principle

with no additional programming difficulties , the resulting computation time

requirements become rather large. As remarked earlier , the case where m—3

or 4 usually represents a reasonable ccmpromise between improved performance

and increased complexity. In any case, the general characteristics of the

relative performances of the two detectors will remain the same for larger in.

We will also focus on the constant signal case, although again the time—varying

signal case can be analysed with more computation time and will yield

similar characteristics.
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In obtaining numerical results for detection power , the parameters a

and b for the detectors were chosen to yield a good compromise design

(based on the a~alytical efficacy expressions) for the class of noise

density functions containing the Gaussian, double—exponential and Cauchy

densities. These last two densities are often used in judging the perfor-

mance of detectors under conditions of heavy—tailed non—Gaussian noise.

For the symmetric densities and odd—symmetric a vector , we will have

a0 — — — , a~ — 0, and a~ — ~~, for the case m—4. For zero—mean Gaussian

noise 4ensity with variance ~
2 , the quantiles au and a3 are given by

83 — —a1 — 0.6745o. We will now assume that for the rn—interval detector the

known (or estimated) quantiles of the symmetric noise distribution are

defined by the components of the above a vector with a3 — —al = O.6745a
0

where is a known positive constant. This definition of the parameter a

may be thought of as arising from an assumption that the noise density function

is nominally Gaussian with variance

The double—exponential density function is defined by

~ e 
, (15)

where a2 is the variance. In this case the quantiles a1 and a3 are given

by a3 — —a~ 
= 0.490lo. Thus 

~~~~ 
with 0 — l.3760o has the same quantiles

as the Gaussian density with variance for m4.

For the Cauchy density function

- 
1 (16)

u k 1 + (x/k)2

LA ~~~~~~~ 
_ _ _ _ _ _ _
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we have a3 — —a 1 = k; thus k — 0.6745o~ gives the same quantiles (for m=4)

as the Gaussian density with variance a~
2.

For these symmetric densities, we find from (14) that the optimum

b vector has even symmetry , so that b4 — —b1 and b3 = —b2. Proceed ing to find

these a symptotically optimum values as suggested in (a) above, we find that

the optimum value of b is defined by b3 — O.2554b4 for Gaussian noise with

variance o~
2 , and by b4 — b3 for both the density ~e 

with a=l.376c~ and 
¶

the density f~vith k—0.6745o0. In all cases the vector ! was the common vector

of quantiles, m—4. Note that this says that the sign detector is optimal for

the Cauchy density if the partitioning is based on the quantiles for m 4.

The sign detector is also the max imum—eff i cacy  (locally optimum) detector

f or double—exponential noise.

As a compromise design for the weight—vector b , we will use b3 0.5b4 .

Together with the quantile vector a, this  leads to an e f f i c a c y  of 0.82/o
~
2 for

the Gaussian density with variance c~
2 , an efficacy of O•95/(

~o
2 for the

double—exponential density with the same qu4ntiles , and an efficacy of 0.80/c
0
2

for the Cauchy density with the same quantiles. Note that with the respective

optimum analog schemes, the maximum efficacies in these three cases are

[7) l/o0
2,and 1.06/002 and l.1/c~

2. Using a sign detector on these fixed—

quantile densities, the efficacies are O,64/0o
2, l.0610o

2 and O.89/0
o
2 ,

respectively. On the other hand , using the linear sum detector which gives

the maximum efficacy for Gaussian noise, we get an efficacy of 0.53/o~
2 and

zero for 
~~ 

and 
~~~~ 

respectively,  with the same quantiles. Thus, the compromise

design where a is the quantile—vector and h is defined by b3 = O.5b4 is

seen to yield a useful design with good overall asymptotic performance

• compared to the sign detector and the linear detector. 



-~ —- - ~~-r - •

-1G.

For the vectors a — (— , _0.6745o
~

i 0, O.6745o~ . 
o~) and b (2 , 1,l,2),

numerical  results on de tec t ion  powers were obtained fo r  sample sizes n=25

and 50, false—alarm probabilities •i=1 O~
2 

and lO~~ and for a range of values

of 8/ (for constant—signa l detection so that sj l, i 1 ,. . .n, in (1)] for

b..~.. ti 
- J - - ; : -  interval detector and the four—level generalized sign detector .

Th*~~ ~~t ’  mre gIven In Table I. In th is  table , de tec t ion  probabi l i t ies

~re g4~~” ~~ the three noise d.~nsity functions we have discussed pre—

‘
~ ‘.-;1v , e~eh density function having the common quantiles defined above.

For ea ’~ densit> function de itct ic~n probabilities are given for the fixed—

threshold ni—interval test and the conditiona l generalized sign test.

Several In t e r e s t i n g  fea tu res  are apparent f rom Table I .  As expected ,

we observe that  the conditiona l test  has a power which is smaller than that

of the fixed—threshold test. It can be seen tha t  fo r  small values of 8/c’0,

a cunditior  under which the efficacy of a detector is a good indication of

i ts  de tec t ion  power ( fo r  n not too small), the condit ional and f ixed—thresho ld

test powers are almost the same. We also find that in this case the variat ion

in detection power between the three different noise density functions is

In agreement with the variation in e f f i cacy  for these cases. As 6/co increases ,

there is a more apparent d i f f e r e n c e  between the powers of the f ixed—threshold

and conditional tests. However, for the Gaussian case this difference in

powers is quite nominal. Compared to the performance of the sign detector ,

both the conditional and fixed—threshold tests achieve the same high degree

of improvement for Gaussian noise.

The double—exponential and Cauchy noise densities seem to lead to

somewhat larger differences in powers for the two tests. This may be due

to the possibility that knowledge of the quantiles (rn—interval fixed—

threshold test implementation) amounts to having more “information”, in

- -  - ————~~~ 
___________



I
—11—

the detection context , for the broad-tailed non-Gaussian densities as

compared to the Gaussian case, so that larger sample sizes are needed

before the conditional and f ixed—threshold  tests have similar performances.

The detection powers in Table I also reveal that  for small signal

strength the sign detector performs better for the double—exponential

density than the four—level detectors. However, it is interesting that this

performance advantage disappears for larger values of 6/ce. This is due

to the fact that although the sign detector is locally optimum for double—

exponential noise, for non—vanishing 0 the optimum detector nonlinearity

is not the hard limiter , but the “soft” limiter function

Thus for larger values of 0 the four—level quantizer characteristics of

the four—interval fixed—threshold and conditional—threshold detectors

give a closer match to the “soft” limiter [7]. For Gaussian noise the

four—level detectors are uniformly better than the sign detector , because

the uniformly most powerful linear—sum detector Is always better approxi-

mated by the four—level quantizer characteristic . For the Cauchy density,

the variations in relative performance of the four—level and sign detectors

are again explained by similar considerations.

Although the fixed—threshold four—interval detector achieves a larger

detection power than the conditional threshold detector , it achieves a

fixed false—alarm probability provided the noise quantile vector is cor-

rectly specified. If the actual noise density function has a quantile

• vector other than the assumed vector , the false alarm probability a of the •

-

fixed threshold four—level detector will differ from the design value 
~o•

The conditional—threshold implementation , on the other hand , retains the

design value of a for any symmetric noise density func tion . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Table II shows the effect on false alarm probabilitie s of a mi s-match

between the design quant i i i ’  vector a and the actual values of the quant tie

vector for the noise dens i ty  func t ion  in the f i x e d — t h reshold d e t ec t o r .

The f i r s t  four columns of the t ab le  show the actual values of Pj

~Imre F is the noise d iet t ib u t  ton f u n c t i o n . The r e su l t s  are shown [or two

d i f fe ren t  design values a0 of the false a l a rm p r o b a b i l i t y , achieved when

Pj — 0 ,25 , j  = 1,2 ,3 ,4, I t  Is seen that the ac tua l  va lue  of ~ may d i f fe r

cona iderabl ? from t he design value , especia l ly  for  s m a l l  design va lues  of ~ .

These results also show tha t in order to ensure .1 value t o t  ~ which  tends

to be less than or equal to a value ~~ , t he imp le ment .‘J v a l u e  of t he

parameter a3 — —a1 In a should he taken to be somewha t larger t han the

nominal or estimated value. This would result in a lower dot ect or power

when the nominal assumptions are correct. Table l i i  i l l u s t r a te s  t h i s

effect for the case of ~atiss1an noise w i t h  v a r i a n c e  . where the four—
0

level detec t ion is based t~~ ~ value a — 0.81~~) rather than the nomina l

value 53 O .67 45o~ . In this case It is seen t ha t  the cou d it  lonal  t e s t

performs almost as wel l  as , or bet t o t  than , the  I ixed th resho ld  de t ec to r

In fac t , the power of the condit ion a l t est  in Table  l i i  is better than in

the corresponding s i t u a t ion  in Table I .  T h i n  Is because the opt imum va lu e

for a
~ 

here is o.qs 71.

The fundamental difference between the rn-interval (fixed—threshold)

and generalized sign (conditional test) detectors Is t h at in the latter , the

threshold and randomizat ion probab 11 ii y depend on the received dat a. The

conditiona l test is , nevertheless, fairly easy t o  implement ; one method

of Imp lementat Ion is to use a stored set of thresholds anti rant1orni~ at tons

in a table look—up device , as descr ibed in ( .‘I .  One s imp l i f i c a ti o n  wh i ch

may be desirable In n~y threshold test Is the iptantizat Ion of the ran-

dosisatlon p robab il i ty ,  to perhap s only  two values  zero and 0.3. This would

_ _ _ _ _ _ _ _  _ _ _ _ _ _  --- - -•-- ~~~•—
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also reduce storage reqtilrements in the tabl e rot a cond it  ton a l t e s t

only one bit now being required for each randomization probabti ttv .

In uonparametric app t l~ at ions the di’s ign value of the f a l se  a l a r m

probabi l i ty  ~i1, would not he exceeded if In each case the exact ratidomi~ atio~

probability r is rep laced by o. c if ~~~~~~~ ~nd 1w ~oro o therwise .  in

Table IV the ~f feet on ~ Is shown ft i i  such a quant  I sat ion of r for both

the f ixe d—thr e sho ld  and cond i t i ona l  t e a t . These results were obtained w i t h

the assumpt ton that  the ~ vector is the vect or of quant l ie s  so tha t each

Pj 0.23 (J~ 1 •.
‘
. 
1,4) . The resr~ i t s  in Table  IV show t h a t  the fixed—

threshold test achieves a value (o r  a which in  g e n e r a l ly , hu t  uot a l w ay s

closer to th e  desi gn value a ).

IV. e0Nel t~Si0N

Pioth the I txed—tht e~ho ld ~n— I tit ervat  detec t or and th e  c o n d i t i o n a l

gnner~ I I zed sign d~ t ec ter can v let d a a t gn i  I cant  lv  h ot t or o ve r a l l  detect or

performance than the s imp le  s ign  d e t e c t o r . In the l i m i t  tug case ot large

samp les and vanish lug signals bet l~ Improveti detect e t s  have idt’n t I ca l  per —

formances. The rn—interval detector achieves a slight ly larger detect ion

poi~~r , but is n onp ar amet r ie  over a r e M t r t c t e d  class of noise  d en s ity  fu n c t i on s .

The generalized sign detector has a r ixe d a l a i m  t~r e h a b i l l t v  for  any a m —

metric noise density lunet ion , at t h e  expense of a m i n o r  In crease  in imp t emen-

tat ion comp lex it v • If the quant tie vecto r  In the rn —tnt i’ tva  I detec t ~‘i

imprec isely knn~m, nonparamet tic performance i~ possible  on ly  w I t h  a loss

in power • For the genera Ii ;od s ign  del o t t  ot knowled ge ot I ho ituant  l ie s  Is

not essential , hut serves as a guide in p icking a good part It toning scheme

for the data .

• - .—  -
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FIGURE CAPTION 
-

FIGURE 1 Structure Of Generalized Sign (Conditional) Detector
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TABLE CAPT IO!S

TABLE I DETECTION POWER OF rn-INTERVAL (FIXED THRESHOLD) AND

GENERALIZED SIGN (CONDITIONAL) DETECTORS , m-4

TABLE II ACTUAL TYPE I ERROR PROBABILITIES ~ OF rn—INTERVAL

DETECTOR , m’4, FOR DESIGN VALUES cz .~, WITH DIFFERENT

Pj VALUES FOR THE ! VECTOR . I
TABLE III EFFECT ON DETECTION POWER IN rn-INTERVAL DETECTOR , m~4,

OF LARGER a3 PARAMETER TO MAINTAIN n WI THIN DESIGN VALUE

TABLE IV EFFECT ON a OF TWO-LEVEL RANDOMIZATION PROBABILITY

(0 AND 0.5)

__________ - _____________________________- —- ____________________
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TABLE II

Parameters of actual N — 25 N — 50
noise distribution

p1 P2 p3 p4 a0 0.0l ao 0•~~ 
ao O.Ol a

0—O.OO1

0.20 0.30 0.30 0.20 0.0065 0.0005 0.0065 0.0005

0.225 0.275 0.275 0.225 0.0082 0.0007 0.0082 0.0007

0.25 0.25 0.25 0.25 0.010 0.001 0.010 0.001

0.275 0.225 0 225 0.275 0.0120 0.0014 0.0119 0.0014

0.30 0.20 0.20 0.30 0.0141 0.0018 0.0141 0.0018

TABLE III

Gaussian Noise
a3—0.82o0 N 25 a0 0.01

Fixed
8/00 Threshold Conditional

0 0.0069 0.010

0.25 0.0909 0.1089

0.50 0.4142 0.4398

- 

- 
0.75 0.8132 0.8196

1.0 0.9763 0.9750

I



TABLE IV

a — quantile vector
N — 2 5  N — S O

Fixed Fixed
Threshold Conditional Threshold Conditional

0.05 0.0438 0.0442 0.0490 0.0456

0.01 0.0092 0.0085 0.0099 0.0089

0.001 0.00078 0.00073 0.00092 0.00088

J
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